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A combination of analytical, numerical, and qualitative methods is used to study competing equi-
librium orientational configurations in a liquid-crystal thin film. The material is a cholesteric liquid
crystal and has a negative dielectric anisotropy. The system has strong homeotropic anchoring of
the liquid-crystal director on the confining substrates and is subject to a voltage applied across the
film thickness. A free-energy functional embodies the competing influences of the boundary con-
ditions, the intrinsic chirality of the material, and the electric field. Attention is restricted to director
fields that are functions only of the distance across the cell gap. A detailed phase and bifurcation
analysis of the two equilibrium configurations of this type is presented; the control parameters are
the ratio of the cell gap to the intrinsic pitch of the cholesteric and the applied voltage. The study
was motivated by potential technological applications. The phase diagram contains both first-order
and second-order transition lines, the former terminating at an isolated point and the latter at a triple
point. The voltage-dependent nature of the total twist of the director across the cell is revealed and
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leads to multiple equilibrium orientational states and com-
plex transitions among them.

This system (basic geometry, orientations, and mate-
rial properties) underlies technologies discussed in Refs.
[1, 3, 6, 10]. The motivation for our work was as part of
a combined experimental and analytical study of this sys-
tem with a particular (proprietary) material being evaluated
for potential commercial applications in such areas. This
basic system (with various different materials) has been
much studied from experimental, qualitative, and numer-
ical points of view.22–27 The most interesting equilibrium
configurations are functions of two space dimensions, one
being across the cell gap, periodic in one direction in the
plane of the film. A variety of such textures and transitions
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model, meant to be valid on length scales that are large
compared to intrinsic, molecular-order length scales. This
theory has been very successful in modeling systems of
low-molecular-weight liquid crystals in super-micron-size
geometries. Its validity is strained, for example, when deal-
ing with cores of the singular defects,18�
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which is to be solved on 0 < z < � subject to boundary
conditions "�0� = "��� = 0. Here we regard k1, k2, and
�̄a as “material” parameters and � and � as “control” or
“continuation” parameters. The dimensionless parameter �
is proportional to the voltage V , while � is proportional to
the d/P ratio—recall that q0 = 2�/P . Numerical values
for k1, k2, and �̄a for the material used in our experiments
(see Table I) are given by

k1
�= −0�039� k2

�= −0�580� �̄a
�= −1�088 (27)

We also note that in terms of � and �, the spinodal ellipse
(23) becomes the unit circle in the � − � parameter plane

�2 + �2 = 1 (28)

3.3. Perturbation Analysis of Bifurcation Points

We restrict our attention to scenarios of the types depicted
in Figure 4: � fixed, continuation with respect to �, or �
fixed, with continuation in �. Other ��� �� trajectories are
possible. Considering the former of these, we introduce a
continuation parameter - and formally expand around a
possible bifurcation point at - = 0:

"�z. -� = "1�z�- + "3�z�-3 + "5�z�-5 +· · · (29a)

��-� = �0 + �2-
2 + �4-

4 +· · · (29b)

The oddness of the " expansion (with respect to -) and
evenness of the � expansion are consistent with the sym-
metry of the problem; if one seeks " and � in terms
of more general expansions, one finds the terms omitted
above to be zero.

We require a normalization for the parameter -, and we
adopt the following (for convenience):

4

�

∫ �

0

(
�"

�-

)2

dz +3
(

d�

d-

)2

= 2 (30)

This gives - the significance of a pseudo-arc-length
parameter in " − � space. The consequences of this nor-
malization at the first few orders are

O�1� �
2
�

∫ �

0
"2

1 dz = 1 (31a)

O�-2� �
2
�

∫ �

0
"1"3 dz + �2

2 = 0 (31b)

O�-4� �
9
�

∫ �

0
"2

3 dz+ 10
�

∫ �

0
"1"5 dz+12�2�4 =0 (31c)

Formally substituting the assumed expansions (29)
into (26), we obtain at leading order, O�-�,

"′′
1 + ��2

0J)Afl]ZO©T[W.j.Zf©WBj65.I.ZD©I.Zc—J—
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We wish to compute equilibria (subject to boundary con-
ditions "�0� = "�d� = 0, 	�0� = 0, and 	�d� = V ), assess
their local stability, and determine which equilibrium con-



R
E
S
E
A
R
C
H
A
R
T
IC
L
E

Gartland Jr. et al. Electric-Field Induced Transitions in a Cholesteric Liquid-Crystal Film with Negative Dielectric Anisotropy

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

2

2.5

HOMEOTROPIC

TIC

d/P

V
Phases and coexistence regions

2nd order transition
1st order transition
Metastability limit
Metastability limit

0.93 0.94 0.95 0.96 0.97 0.98 0.99 1 1.01 1.02
1.2

1.25

1.3

1.35

1.4

1.45

1.5

d/P

V

Phases and coexistence regions (Blowup)

2nd order transition
1st order transition
Metastability limit
Metastability limit



R
E
S
E
A
R
C
H
A
R
T
IC
L
E

Electric-Field Induced Transitions in a Cholesteric Liquid-Crystal Film with Negative Dielectric Anisotropy Gartland Jr. et al.

Ref. [27]) and in the analysis when we allow our fields to
depend on both x and z (on which we will report later).

5. 2-D LOCAL STABILITY OF
HOMEOTROPIC CONFIGURATION

The problematic solutions for this system are functions
of two independent variables, x and z, such as the CF1
configuration. We would like to assess the stability of
the Homeotropic solution to perturbations of this type,
to see, for example, if there is ever a situation in which
the Homeotropic solution loses local stability directly to
a periodic-in-x solution, such as CF1. This is possible in
principle and was the case, for example, for the system
studied by Lonberg and Meyer33 some time ago. The issue
of which solution (Homeotropic, TIC, CF1) is globally sta-
ble (has lowest free energy) must be resolved numerically.
Here we first just perform a local linear stability analysis
of the Homeotropic configuration and show that it is not
possible for it to lose local stability directly to a periodic-
in-x solution when the control parameters are inside the
spinodal ellipse.

5.1. General Linear Stability Criterion

The metastability of an equilibrium solution �n0� 	0� can
be assessed in various ways, here we adopt the point of
view of the constrained director dynamical system

7
�n
�t

= P�n�h�n� 	�� �n� = 1� div���n�
	��
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The associated Lagrange multiplier field is uniform as
well, as is the projection P :

�0�z� = h0 ·n0 = hz�n0� 	0� = �0�a

V 2

d2

P�n0� = ex ⊗ ex + ey ⊗ ey (63)

The expressions for the components of the molecular field,
from which the formula for �0 above is derived, are given
in the Appendix. The pointwise constraint gives

n0 ·u = 0 ⇒ u = uex + vey (64)

The dielectric tensor and its linearization are thus given
(in Cartesian component form) by

�
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the terms − �K1q
2 and − �K2q

2 are stabilizing: they just have
the effect of reducing the effective voltage—recall that
�2 ∝ V 2.

Equation (74c) plus the boundary conditions 9̂�0� t� =
9̂��� t� = 0 can be solved explicitly using a Green’s func-
tion representation:

9̂�z� t� = iq�̄a

∫ �

0
g�z� (. q�û�(� t� d( (75)

where g is given in terms of its eigenfunction expansion by

g�z� (. q� = 2
�

�∑
k=1

sin kz sin k(

$k

� $k �= k2
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For our problem, n = n�x� z� and 	 = 	�x� z�, and we
have

div n = nx� x + nz� z� curl n =




−ny� z

nx� z − nz� x

ny� x




�
n�n =




nxnx� x + nznx� z

nxny� x + nzny� z

nxnz� x + nznz� z




(A3)

Using these formulas, we can write the free energy (2) in
component form

2� = K1�nx� x + nz� z�
2 + K2�n

2
y� z + �nx� z − nz� x�2 + n2

y� x


+2K2q0�−n Ky� z +n
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